发明内容本实用新型的目的是提供一种起升控制系统用液压推动器接触器,实现更好地提 高桥式吊车起升机构的制动器控制系统的安全性,降低制动器故障率。 为解决上述技术问题,本实用新型的技术方案是 起升控制系统用液压推动器接触器,其特征在于,在液压推动器的动力回路上,采
用串联方式设置两套接触器触点。 所述的接触器线圈在控制回路中并联。 与现有技术相比,本实用新型的有益效果是有效地避免了由于接触器主触点粘 连或机械部分卡阻,接触器不能及时断开,使液压推动器无法得到控制的现象发生,提高桥 式吊车起升机构制动器电气控制系统的安全性,降低了制动器的故障率,取得了可观的经 济效益,使用效果良好。
具体实施方式
以下结合附图对本实用新型的具体实施方式
作进一步说明 见图l,起升控制系统用液压推动器接触器,在液压推动器的动力回路上,采用串 联方式设置两套接触器触点。在吊车起升机构制动器电气控制系统安装一个新制动接触 器(K81),动力回路中将原有制动接触器(K71)与新制动接触器(K81)串联,新制动接触器 (K81)直接接在液压推动器(YTS)三相电源上,控制回路中在制动接触器(K71)辅助接线端 子引出两根电源线接在新制动接触器(K81)的辅助接线端子上。将两台制动器接触器K71、 K81的动力回路电源L21、L22、L23与液压推动器三相动力电源T1S、T2S、T3S采用串联方式
连接,使三相电源依次通过两台接触器,可以达到两台接触器互相保护的目的。 见图2,接触器线圈在控制回路中并联。将两台制动器接触器K71、K81线圈控制
具体实施方式
—种龙门吊夹轨器,如图1 图5所示,包括底板2、夹臂3、挡杆1、夹紧螺栓4和 转轴5,底板2固定在龙门吊底部靠近轨道6的位置,底板2上端设有挡杆1 ,底板2下端设 有转轴5,夹臂3底端与转轴5连接,两个夹臂3之间通过夹紧螺栓4连接。夹臂3头部内 侧设有凹槽,凹槽的位置与轨道6侧面的位置相对应,夹臂3头部至凹槽底边的长度小 于轨道6凹陷处的高度。 龙门吊车在行进时,本实用新型呈收起状态,如图1、图2所示,夹臂3通过其上方 的挡杆1卡紧而不能落下。当龙门吊车停止运动并需要用本实用新型固定时,将挡杆1和 夹紧螺栓4卸下,如图3所示,由于没有了挡杆1的阻挡,夹臂3绕转轴5落下,夹臂3头部 的凹槽卡在轨道6沿上,如图4、图5所示,用夹紧螺栓4将两个夹臂3固定住,龙门吊车被 紧固在轨道6上。
权利要求一种龙门吊夹轨器,其特征在于,包括底板、夹臂、挡杆、夹紧螺栓和转轴,底板固定在龙门吊底部靠近轨道的位置,底板上端设有挡杆,底板下端设有转轴,夹臂底端与转轴连接,夹臂头部内侧设有凹槽,两个夹臂之间通过夹紧螺栓连接。
2. 根据权利要求1所述的龙门吊夹轨器,其特征在于,所述的凹槽的位置与轨道侧面 的位置相对应,夹臂头部至凹槽底边的长度小于轨道凹陷处的高度。
专利摘要本实用新型涉及一种龙门吊夹轨器,包括底板、夹臂、挡杆、夹紧螺栓和转轴,底板固定在龙门吊底部靠近轨道的位置,底板上端设有挡杆,底板下端设有转轴,夹臂底端与转轴连接,夹臂头部内侧设有凹槽,两个夹臂之间通过夹紧螺栓连接。该装置结构简单,操作简便,准确有效的固定龙门吊车体,保障了设备和工作人员的安全。
所述电磁阀的进气口与所述气源连接,所述第二电磁阀的进气口与所述电磁阀的排气口连接,所述第三电磁阀的进气口与所述第二电磁阀的排气口连接;所述电磁阀的出气口与所述气控换向阀的进气口连接,所述第二电磁阀的出气口与所述气控换向阀的第二进气口连接,所述第三电磁阀的出气口与所述气控换向阀的第三进气口连接。
根据本实用新型的另一方面,提供一种工程车辆,包括具有气控换向阀的液压系统,所述工程车辆还包括根据实用新型提供的控制机构。
所述电磁气阀与所述气控换向阀相邻地安装在所述工程车辆的底盘上,并通过气管与所述气控换向阀连通。
所述工程车辆还包括储气筒,该储气筒与所述电磁气阀的进气口连通,以作为所述气源。
所述工程车辆的线束与所述电磁气阀电连接,以作为所述电磁气阀的所述电源。
,所述工程车辆为自卸车辆,所述液压系统还包括用于控制货箱起落的油缸,所述气控换向阀具有起升工作位置、降下工作位置和缓降工作位置,以分别控制所述油缸对货箱进行起升、降下和缓降作业,所述气控换向阀包括伸出气口、收缩气口和缓降气口,以分别控制所述气控换向阀进入起升工作位置、降下工作位置和缓降工作位置。
[0015]本实用新型的有益效果是:通过电磁气阀驱动气控换向阀工作,利用电磁气阀可与控制该电磁气阀的控制装置分开布设且通过线束电连接的特点,能够实现将电磁气阀与气控换向阀相近布设,这样,使得电磁气阀与气控换向阀之间的连接气管跨度变小,简化本实用新型提供的控制机构的结构,且使得气管输送压缩空气的效果更好,尤其适用于自卸车辆。
[0016]本实用新型的其他特征和优点将在随后的具体实施方式部分予以详细说明。
在选择电机功率时,根据以上的条件就能基本确定减速机的减速比与电动机功率和极数。
(2)电控系统的设计
a)变频器的选取
当系统的电动机确定后,就可着手进行控制系统的设计。是变频器的选型。现在市场上的国内外变频器品牌不少,控制水平和可靠性差别较大,技术上大体可分为V/F控制、矢量控制和DTC直接转矩控制三种。用于塔机的起升机构,建议好选用具有矢量控制功能或者是具有DTC直接转矩控制功能的变频器,这样的变频器品牌较多,设计者可根据自己的熟悉程度、技术支持力度、其他行业厂的使用情况等因素来选择。
由于变频器品牌的不同,相同功率下变频器的过载能力和额定电流值也不完全一致。所以,选择变频器容量时,不单要看额定功率的大小,还要校核额定工作电流是否大于或者等于电动机的额定电流,一般的经验是选择变频器的功率大于电动机功率10~30%左右。
b)能耗电阻的选取
作为起重用变频系统,其设计的在于电动机处于回馈制动状态下的系统可靠性,因为这种系统出故障往往都发生在重物下降时的工况,如溜钩、超速、过压等。也就是说重物下降工况时变频系统的性能好坏将直接影响整个起升机构能否安全运行。这就要求设计人员清楚地了解变频传动系统的回馈工作过程,才能做到心中有数。
定钳式和浮钳式盘式制动器的优点主要有:
1、定钳式和浮钳式盘式制动器工作表面为平面且两面传热,圆盘旋转容易冷却,不易发生较大变形;
2、定钳式和浮钳式盘式制动器无助势作用,制动器效能受摩擦系数影响小,制动性能较为稳定;
3、定钳式和浮钳式盘式制动器制动盘沿厚度方向热膨胀量小,即使长时间使用后制动盘因高温膨胀,也会使制动作用增强;
4、定钳式和浮钳式盘式制动器容易实现自动调整间隙,维修简便。
汽车制动系统工作原理是什么?
目前大部分小型车都采用液压制动,因为液体是不能被压缩的,能够几乎的传递动力,基本原理是驾驶员踩下刹车踏板,向刹车总泵中的刹车油施加压力,液体将压力通过管路传递到每个车轮刹车卡钳的活塞上,活塞驱动刹车卡钳夹紧刹车盘从而产生摩擦力令车辆减速
盘式制动器靠什么来制动?轴向压力。
“盘式制动”和“鼓式制动”就是“盘式刹车”和“鼓式刹车”,区别为:
1、鼓式刹车是在轮毂里装设二个半圆型的刹车片,用“杠杆原理”使刹车片与轮鼓内面接触而发生摩擦而制动。盘式刹车以刹车卡钳控制两片刹车片去夹住轮子上的刹车碟盘。在刹车片夹住碟盘时,其二者间会产生摩擦。
2、鼓式刹车的刹车系统可以使用较低的油压,鼓式刹车在受热后直径会增大,会发生刹车反应不如预期的情况。盘式刹车散热性优于鼓式刹车,连续踩踏刹车时不会造成刹车衰退而使刹车失灵。盘式刹车左右车轮的刹车力量比较平均,刹车盘具有较好的排水性,能降低水或泥沙造成刹车不良的现象。
Ed23/5电力液压推动器,电力液压块式制动器
更新时间:2024-03-30 02:18:22
价格
¥988
起批量
≥ 1件
供应商
焦作制动器股份有限公司
所在地
河南焦作市制动器工业园区